否则判为其他点,一个星座点对应一个调制符号.11四种状态),QPSK四个点组成一个QPSK的星座图,而接收时用于判断发送的到底是哪个点。学过通信原理或者数字通信的应该知道,依次类推).,如果离00点最近,则是根据接收信号与星座图上4个点的距离(一般称为欧式距离)来判断发送的是哪个信号,其信息量是发送一个bit的2倍,此时可以选择QPSK(四相位调制,即有00,这样没发送一个调制符号。
因此星座图的作用主要是在调制时用于映射(比如QPSK,从而提高传输速率,一般不会直接发0或者1,则判为00,每个点与相邻的点相差90度(幅度是相同的),要将数字信号发送出去,64QAM等);
而QPSK信号接收解调的时候,(如果没3个bit的话是8种状态,10,总共四种状态.,1信号(bit)按照一个或者几个组成一组,01,16QAM,而是先将0星座图是目前数字调制的一个基本概念,从而正确解调数据,自己画一下就知道了,对应前面00,11,比如每两个bit组成一组
不知道
星座图是目前数字调制的一个基本概念。学过通信原理或者数字通信的应该知道,要将数字信号发送出去,一般不会直接发0或者1,而是先将0,1信号(bit)按照一个或者几个组成一组,比如每两个bit组成一组,即有00,01,10,11,总共四种状态,(如果没3个bit的话是8种状态,依次类推),此时可以选择QPSK(四相位调制,对应前面00...11四种状态),QPSK四个点组成一个QPSK的星座图,每个点与相邻的点相差90度(幅度是相同的),自己画一下就知道了,一个星座点对应一个调制符号,这样没发送一个调制符号,其信息量是发送一个bit的2倍,从而提高传输速率;
而QPSK信号接收解调的时候,则是根据接收信号与星座图上4个点的距离(一般称为欧式距离)来判断发送的是哪个信号,如果离00点最近,则判为00,否则判为其他点。
因此星座图的作用主要是在调制时用于映射(比如QPSK,16QAM,64QAM等),而接收时用于判断发送的到底是哪个点,从而正确解调数据。
如果看不懂的话建议从通信原理基础开始好好学哦
根据天线原理,通俗讲天线的增益是无数半波振子天线增益之和,高频的波长较短,容易制作天线。
QPSK在CDMA中应用最为普遍。四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,315°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。 数字调制用“星座图”来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。 首先将输入的串行二进制信息序列经串-并变换,变成m=log2M个并行数据流,每一路的数据率是R/m,R是串行输入码的数据率。I/Q信号发生器将每一个m比特的字节转换成一对(pn,qn)数字,分成两路速率减半的序列,电平发生器分别产生双极性二电平信号I(t)和Q(t),然后对coswct和sinwct进行调制,相加后即得到QPSK信号。 QPSK是一种频谱利用率高、抗干扰性强的数调制方式, 它被广泛应用于各种通信系统中. 适合卫星广播。例如,数字卫星电视DVB-S2 标准中,信道噪声门限低至4. 5 dB,传输码率达到45M bös,采用QPSK 调制方式,同时保证了信号传输的效率和误码性能。