首页 星座 正文

仙女星座1600900 怎么区分星云和星系

复制的我想你就不要看了吧。这个关于星云和星系,首先说星云 ,星云一词的由来应该追溯到康德的宇宙星云假说,星云假说是对星系的形成的一种解释,可以说星系是星云经过发展演化的后续产物,在宇宙形成之初,大量的物质成气体或尘埃状向四面八方扩散(大爆炸宇宙论中的内容),在这种扩散过程中,物质和物质的碰撞,因为万有引力(当然这个万有引力是不存在,因为爱因斯坦的广义相对论已经证明这个万有引力是物质使空间弯曲时产生的现象)结合在一起,一些大的气体尘埃团就渐渐形成了,这时的尘埃团密度低,所以叫做星云,在经过演化和发展物质渐渐的越聚越多,因为自身的引力越聚越紧,就形成了固体的行星,当然一些特殊物质的星云也可能形成恒星。我想这么说已经很通俗了吧 呵呵 。

圣斗士的全部绝招

圣斗士人物绝招全分析

青铜圣斗士

天马星座星矢 cosm 400 绝招:天马流星拳,天马彗星拳,天马回旋碎击拳. DF:105

天龙星座紫龙 cosm 500 绝招:庐山升龙霸,庐山亢龙霸,庐山龙飞翔,庐山百龙霸.圣剑 DF:125

天鹅星座冰河 cosm 520 绝招:钻石星尘拳,金光火焰旋风拳,结冰环,冰封双腿法,极光冰柜,曙光女神之宽恕. DF:110

仙女星座瞬 cosm 400 绝招:星云锁链,星云电光链,星云风暴. DF:115

凤凰星座一辉 cosm 700 绝招:凤凰幻魔拳,凤翅天翔. DF:150

白银圣斗士

蜥蜴星座米斯迪 cosm 700 绝招:陨石旋风拳.空气壁. DF:155

白鲸星座摩西斯 cosm 600 绝招:白鲸翻滚. DF:135

猎犬星座艾里奥 cosm 580 绝招:百万幽灵拳,读心术. DF:135

半人马星座巴比 cosm 650 绝招:超能烈焰拳. DF:140

乌鸦星座加密安 cosm 620 绝招:黑翼拳. DF:135

御夫星座加比拉 cosm 540 绝招:飞轮. DF:130

地狱犬星座达迪 cosm 550 绝招:铜球锁链 DF:130

英仙星座阿鲁高 cosm 720 绝招:美杜沙盾,幻影魔蛇. DF:130

蜘蛛星座托姆加斯 cosm 680 绝招:狼蛛丝拳. DF:140

巨犬星座史里乌 cosm 525 绝招:连环反冲. DF:125

银蝇星座迪奥 cosm 520 绝招:死亡苍蝇. DF:125

武仙星座杰迪 cosm 560 绝招:大力神旋风拳. DF:125

水晶圣斗士 cosm 710 绝招:钻石星尘拳,冰封双腿法. DF:145

仙皇星座亚路比奥尼 cosm 705 绝招:星云琐链. DF:140

蛇夫星座沙尔拉 cosm 500 绝招:发电魔蛇. DF:125

天鹰星座魔铃 cosm 500 绝招: 流星拳,天鹰爪. DF:120

天琴星座奥路菲 cosm 2000 绝招:镇魂曲,天使小夜曲. DF:208

黄金圣斗士

白羊星座穆 cosm2100 绝招:星光灭绝,星宵旋转功,水晶墙. DF:235

金牛星座阿鲁迪巴 cosm 1900 绝招:牛角拳. DF:205

双子星座撒加 cosm 2550 绝招:银河粉星拳,异次元空间,幻胧魔皇拳. DF:240

巨蟹星座迪马斯 cosm 1850 绝招:积尸气冥界波. DF:205

狮子星座艾欧里亚 cosm 2150 绝招:闪电光速拳,等离子光速拳.DF:225

处女星座沙加 cosm 2500 绝招:天魔降伏,六道沦回,天舞宝轮. DF:245

天平星座童虎 cosm 2600 绝招:庐山百龙霸.十二件武器. DF:245

天蝎星座米罗 cosm 2050 绝招:腥红毒针,安达雷士.毒蝎念动波. DF:210

人马星座艾洛斯 cosm 2450 绝招:原子能光速拳,黄金箭. DF:235

摩羯星座修罗 cosm 2000 绝招:圣剑. DF:220

水瓶星座卡妙 cosm 2200 绝招:曙光女神之宽恕,极光冰柜.钻石星尘拳. DF:225

双鱼星座阿布罗狄 cosm 1800 绝招:红玫瑰,钢牙黑玫瑰,白玫瑰. DF:200

巨蛇得尔鲁 cosm 1450 绝招:巨人无敌拳,夺命飞斧. DF:205

北极狼菲路 cosm 1400 绝招:神威狼牙拳,落山群狼拳. DF:190

北欧野马哈根 cosm 1600 绝招:宇宙冷冻拳,地狱热炎拳. DF:200

竖琴米美 cosm 2350 绝招:光速拳,催命安灵曲,魔弦送葬曲. DF: 220

魔鬼紫水晶阿鲁贝利西 cosm 1150 绝招:紫晶凝钝拳,火焰剑,精灵魔拳. DF:165

剑齿虎斯多 cosm 1850 绝招:维京虎吼拳,怒海蓝涛. DF:215

双头龙捷古弗烈特 cosm 2400 绝招:奥丁先锋拳,九天游龙拳. DF:235

影子巴多 cosm 2300 绝招:影子维京虎吼拳. DF:225

海马将军巴尔安北太平洋)cosm 1400 绝招:海马巨浪拳,海马压力,飓风飞瀑拳.水纹防御壁.DF: 215

六头圣兽斯基拉一奥南太平洋)cosm 1550 绝招:六圣兽攻击,黑色死亡潮.DF:195

海王子克修拉印度洋)cosm 2250 绝招:黄金枪,悬目闪电,般诺五行.DF:240

海怪硫姆迪斯(南冰洋)cosm 1200 绝招:撒拉曼特电击拳,变身术.DF:175

魔鬼鱼艾尔扎克北冰洋)cosm 1900 绝招:极光寒冰拳.DF:205

海魔女苏兰特南大西洋)cosm 2450 绝招:死亡交响曲,死亡高潮.DF:235

海飞龙加隆(北大西洋)cosm 2500 绝招:魔鬼三角次元,银河粉星拳.DF:240

地暴星独眼人 cosm 910 绝招:暴发力. DF: 140

地阴星丘布 cosm 450 绝招:十字连击1 DF: 110

地鸣星塞洛斯 cosm 420 绝招:十字连击2 DF: 115

地潮星尼特尔 cosm 415 绝招:十字连击3 DF 118

地奇星捷古斯 cosm 200 绝招:无 DF: 48

地暗星涅普尼奥 cosm 1740 绝招:修罗功. DF: 92

地狱星莱米 cosm 1650 绝招:虫足带. DF: 117

地妖星巴比隆 cosm 2080 绝招:意念波,毒液,蚕丝,冥界之蝶. DF: 182

天罡星

阿格龙河:

天间星卡隆 cosm 1830 绝招:旋转铁桨,电光火石粉身碎骨. DF:220

第一狱审判庭:

天英星路拿 cosm 1900 绝招:火龙纹绳,石竹阵. DF:180

第二狱法老圣地:

天兽星法拉奥 cosm 2050 绝招:魔琴之均衡咒语,魔琴之均衡诅咒. DF:228

第三狱巨岩地狱:

天角星洛克 cosm 705 绝招:滚石巨浪轰炸. DF:90

天败星格亚达 cosm 480 绝招:无 DF:93

第四狱沼泽地狱:

天罪星专列基亚斯 cosm 1990 绝招:地狱啸声. DF:185

第五狱灼热地狱:

天丑星史丹杜 cosm 1670 绝招:死亡嘲笑. 地裂波. DF:169

黑暗迷宫:

天斗星凯度 cosm 2280 绝招:恶魔箭,离子爆碎拳. DF:207

第六狱血池地狱:

天伤星米娜 cosm 1800 绝招:吸神术. DF:130

天耻星法尔多 cosm 2110 绝招:冥世反攻之狼烟。DF:158

恶魔森林:

天幻星嘉尼 cosm 2090 绝招:海市蜃楼幻像,八裂光轮. DF:186

血之瀑布:

天虫星达福 cosm 1740 绝招:血腥之咆哮。DF:210

第七狱陷井地狱:

天驱星霍格玛 cosm 2108 绝招:黑骑士之盾,神皇脉冲拳。DF:225

第八狱冰之地狱:

天哭星巴连达因 绝招:烈火烧身叹息墙壁:

天魔星女王绝招:血花刀剪. 天牢星哥顿 cosm 2020 绝招:巨斧飞舞. 天捷星西路费都 绝招:魔鸟巨风.

冥界三巨头

天猛星拉达曼迪斯 绝招:灰暗警告冲击波. 天雄星艾亚歌斯 绝招:宇宙大幻觉,天鹫喷射风. 天贵星米诺斯 绝招:星尘傀儡线.

17-18世纪天文学有哪些代表人物? 有哪些重大发明?。 国外国内都要写哈。!

古代中国的星象观念约形成于7000年前

中国古人很早就把星空分为若干个区域。在中国西汉时期,司马迁所著《史记》里的“天官书”中,就把星空分为中宫,东宫,西宫,南宫和北宫五个天区。隋代以后,星空的区域划分基本固定,这就是在中国人们常说的三垣四象二十八宿。

“三垣”就是天上的3座城堡,是把北极周围的星象分为紫微垣,太微垣和天市垣三个区域。太微垣在紫微垣西南方。太微是政府的意思,太微垣中的星星多以朝中官员和场所来命名。

天市垣在紫微垣的东南部。太微垣的东边,天市垣是天上的都市,天市垣中的星名均以与皇帝有关的人员,名诸侯国的地名以及某些货市的名称命名。

大约在7000年前,中国古人已经把星空划分成龙和虎两大区域了,后来逐渐形成了四象,即“东方苍龙”,“西方白虎”,“南方朱雀”,“北方玄武”。后来又把四象的每一象各分为七段,每一段叫“宿”,共二十八宿。二十八宿在天空中的位置正好是月球在天上运动的轨道经过的地方。月球绕地球运转一周是27天多,一天恰好经过一宿。在每一宿里都有许多星星,古人给它们分别起名,分成众多星官。当时所发现的2442颗星被划分为207个星官,这些星官又被分列入二十八宿中。中国古人就是根据这些制定历法的。

这是中国早期的星象图,它是一幅砖刻而成的壁画。反映了中国古代的星象观念。中国人把天上的星空按三垣,四象,二十八宿划区分为不同区域。

古代迦勒底人,巴比伦人与希腊人的星象

世界古代文明的另一个摇篮是西亚的幼发拉底河和底格里斯河流域。公元前3000年前,游牧民族迦勒底人来到了两河流域,在今天的伊拉克境内建立了国家。他们深信占星术。长期的星象观察。使迦勒底人发现天上的星群是随季节不断变化着的,他们以此来占卜吉凶祸福。为了占星的需要,迦勒底人特别注意几颗明亮的行星动态,他们把星空上的显著亮星,用想象的虚线连结起来,描绘出各种动物和人的形象,形成最早的白羊,金牛,双子,巨蟹,狮子,室女,天秤,天蝎,人马,摩羯,宝瓶和双鱼这12个星座。后来就成了著名的黄道十二宫了。这就是现代星座的来历。

公元前540年左右,迦勒底人征服了巴比伦人,他们完全接受了巴比伦人先进的文化。巴比伦人除了黄道十二星座以外,又创造了其它一些星座。这些知识传入希腊。公元前270年前后,希腊诗人写的天象诗,其中已经载有44个星座了。后来在希腊天文学家托勒密编制的星表中一共列出48个星座,北方天空的星座雏形就这样形成了。

撒玛利亚人把宇宙想象成一个平坦的地球,日月星辰在大气中运行,上面扣着穹项。后来,古巴比伦人和古埃及人都对这个观念作过修改。

古希腊的伊巴谷编制星表,第一次记载了850颗恒星位置;被西方尊为“天文学之父”

被西方称为“天文学之父”的伊巴谷,生于公元前190年的古希腊尼亚卡伊亚。他的主要活动集中在亚历山大城。该城位于埃及的尼罗河口,是古希腊时期最大的城市。政府投入巨资的著名的亚历山大缪司博学院,是当时最大的学术中心,它的图书馆藏书有70万卷,主要是埃及,古希腊的著作和一些东方典籍。科学家们大多居住在博学院和图书馆里,对哲学和科学进行研究和总结。公元前2世纪,观测天文学在亚历山大城曾经盛行一时。

伊巴谷的主要成就是编制了星表,记载了这些恒星的天体座标和光度,总共包括了850颗恒星在内。为天体测量学奠定了基础。伊巴谷勤奋观测,同时深入研究前人的观测记录,特别是巴比伦人观测的结果和对天体位置计算的数据。他最早发现了反映地球自转轴运动造成地轴方向变运的“岁差”现象,较好地解释了日、月、地球间距离的变化和从地球观测的行星运动的变化。伊巴谷还发明了以经纬度测定地球上不同地点方位的方法,发明了由极点向赤道面投影的制图方法;在数学方面还得出00到1800之间各角度的正弦表,为三角学奠定了初步基础。伊巴谷的科学活动推动了学术发展,给予许多科学发现以重要影响。

巴耶尔1603年出版的星图。在伊巴谷之后,世界各地的天文学研究者都不断制定一些星图,有些成为世界知名星图,曾广为流传。

中国古代天文学家张衡观测记录了3500颗恒星,发明世界第一架水力发动的天文仪器

在东汉时期,中国出现了一位创制天球仪,候风仪,地震仪的天文学家张衡。

张衡于公元78年出生在河南南阳,家境贫苦。但他自幼喜欢读书,成年后曾在南阳郡做了几年文官,后来辞职回乡,潜心天文研究。中国汉朝先后出现了三种关于天体运动和宇宙结构的学说,这就是“盖天说”、“浑天说”和“宣夜说”。“盖天说”认为天在上,地在下,天像一个半圆形的罩子,大地像一个倒扣着的盘子。”“浑天说”主张天是浑圆的,日月星辰会转入地下,早期的浑天说认为大地是平的,改进的浑天说认为大地是球形的。“宣夜说”认为天没有一定形状,而是无边无际的充满气体的空间,日、月、星辰都飘浮在气体中。张衡根据自己对天体运行的认识和实际观察,认为“浑天说”比较符合观测实际。他还制作了一个能够精确演示浑天思想的“浑天仪”。

张衡的另一发明是制作了水运浑象,它是世界上第一架用水力发动的天文仪器。水运浑象实际上是个天文钟,通过它的等速旋转,可以报告时刻。世界上第一个可以测定地震方位的地动仪,也是这位古代科学家发明的。张衡还在《灵宪》等天文著作中,阐述了无限宇宙的思想,解释了月亮反射阳光和月食发生的原因。他对2500颗恒星的观测记录和“周天三百六十五度又四分之一度”的计算结果,和近代天文学非常接近。

中国古代科学家张衡发明的地动仪。

托勒密总结古希腊天文学的全部成就,13卷本《大综合论》影响人类长达1000年之久

托勒密,生于公元85年的锡贝德。从公元127-151年在亚历山大城进行最重要的人物之一,也是影响人类达1000余年之久的“地心说”理论的集大成者和代表者。他的重要著作《大综合论》,共计13卷,概括了希腊时代天文学的全部成就,尤其是总结了亚历山大学派天文学家的成就,以及伊巴谷的发现和阿波罗尼等几何学家的理论体系。

《大综合论》对伊巴谷的理论做了系统发挥,是一部古代天文学的百科全书。它用了近80个圆周来解释天体运动,把宇宙体系给制成一幅合乎逻辑的完善的数学图解。它对一些天文现象也做出了解释,能够反映一定的天体运行的状况。但是它把地球设想为宇宙的中心,则从根本上歪曲了天体运动的本来面貌。

《大综合论》第1卷概要介绍了托勒密对宇宙结构的基本观点,论述了地为球形的证据。第2卷介绍一些基本定义和初等理论。第3卷讨论了太阳的不规则运动和年的长度。第4卷讨论了月亮运动的理论及他自己的重要发现。第5卷讨论天文仪器,包括视差测定规,天球仪,象限仪,水时计等等,并且介绍了推算日月距离的方法。第6卷讨论日,月食计算方法。第7,8卷介绍1080颗恒星的星表。第9卷至结束介绍行星运动的理论。他的理论被后世证明错误。托勒密于公元165年去世,他是自伊巴谷去世以后,西方出现的最有成就的天文学家。

托勒密在理论上的错误是根本性的,这使他毕生的努力失败。这无论对他个人还是对人类而言,都是一个悲剧。图为15世纪制造的日冕仪。

托勒密在理论上的错误是根本性的,这使他毕生的努力失败。这无论对他个人还是对人类而言,都是一个悲剧。图为15世纪制造的日冕仪。

郭守敬是中国元朝时期的著名天文学家之一,也是中国古代最有成就的科学家。他生于1231年,卒于1316年。

公元1271年元王朝建立,准备颁行全国统一的历法。为了精确汇集天文数据,以备制定新的历法,郭守敬花了两年时间,精心设计制造了一整套天文仪器,共13年,其中最有创造性的有3件:高表及其辅助仪器,简仪和仰仪。

高表是古代圭表的发展。表是一根直立在地面上的标竿或石柱。圭是从表的底端水平地伸向正北方的一条石板。每天太阳“走”到正南方时,表影落在奎面上。量度表影长度就能推算出节气的时刻。这是最古老的天文仪器之一。

郭守敬的简仪是中国传统浑仪的发展,这种结构,欧洲到18世纪才采用。仰仪是个中空的半球面,形状像口锅。锅沿刻有方位,锅里刻有与观测地纬度相当的赤道座标网。锅口架一小板,板上有孔,孔的位置正在球面的中心。太阳光通过小孔形成一个倒落在锅里的像。由此读出太阳的座标和该地的真太阳时,还可以用来观测日食,读出日食的时刻,方位和食分等等。郭守敬还发明了许多其它观测器具。

郭守敬根据观测的结果,于公元1280年3月,制订了一部准确精密的新历法《授时历》。这部新历法设定一年为365.2425天,比地球绕太阳一周的实际运行时间只差26秒。欧洲的著名历法《格里历》也规定一年为365.2425天,但是《格里历》是公元1582年开始使用的,比郭守敬的《授时历》晚了整整300年。郭守敬在天文历法方面的著作有14种,共计105卷。郭守敬是中国古代成就突出的科学家,直到很晚,世界各国的科学界才逐渐了解他。

南天星座逐渐形成

南半球天空的星座,直到环球航行成功之后才逐渐形成。1603年,德国业余天文学家巴耶尔出版了一本星图,第一次收入了地理大发现时期的新的天象发现。17世纪末与18世纪中叶,波兰与德国的业余天文爱好者,在大量观测的基础上又增补了几十个星座,从此构成了现在的仙女,天鹰,白羊,牧夫,猎犬,仙后,仙王,天琴,金牛等88个星座。

过去,星座之间的界线呈曲线形,很不规则。1928年,国际天文学会统一规定,这才把全天88个星座间的界线拉直。

哥白尼以惊人的勇气宣告“地心说”为谬误,其《天体运行论》于他临终前两个月问世

1473年2月19日,哥白尼生于波兰维斯瓦河畔的托伦,18岁时考入克拉科夫大学。1495-1496年,他在德国几所大学游学。1497-1503年,他赴意大利留学,先进入博洛尼亚大学,同时努力学习希腊文,攻读天文学。1497年3月9日,哥白尼在博洛尼亚观测月亮掩金牛座α星(毕宿五),这是他一生中的第一次观测记录。他在1500年1月9日和3月4日还观测了土星合月,并在罗马讲学期间观测过1500年11月6日的月食。1512年,哥白尼定居在弗龙堡,弗龙堡城墙中的平台成为哥白尼的天文观测台,他自制了三分仪,三角仪,等高仪等器具。这座遗址被称为“哥白尼塔”,一直保留到今天。

哥白尼的毕生成果是其巨著《天体运行论》,全书分为6卷。在第1卷里,哥白尼讲述了地球的运动和宇宙的构造,驳斥了托勒密的地球是宇宙中心的理论。在后5卷里,他用精密的观察记录和严格的数学论证,阐明第1卷的主张。

哥白尼说:太阳屹立在宇宙的中心,行星围绕着太阳运行。离太阳最近的是水星,其次是金星,再次是地球。月亮绕着地球运行,是地球的卫星。比地球离太阳远的行星,依次是火星,木星和土星。行星离太阳越远,运行的轨道就越大,周期就越长。在行星的轨道外面,是布满恒星的恒星天。哥白尼错误地把太阳说成是宇宙的中心,他的宇宙模式是建立在肉眼观测基础上的太阳系构造图。

哥白尼的著作长期不能得到出版,后来由他的朋友们偷偷在德国纽伦堡排印。1543年5月24日,已经双目失明的哥白尼抚摸着刚刚出版的《天体运行论》说:“我终于推动了地球。”7月26日,哥白尼逝世。

著名天文学家和思想家哥白尼,他的思想曾经改变了人类文明的进程。

丹麦人第谷·布拉赫毕其一生专注于天文观测和天文仪器的制造

第谷·布拉赫,1546年12月14日生于丹麦斯科讷,出身贵族。14岁入哥本哈根大学。第谷从小迷恋天文观测,终身致力于天文仪器制造和天文研究。他一生积累的观察数据和资料,对后来的著名天文学家开普勒有极大帮助。

1576年2月,丹麦国王将丹麦海峡中的汶岛风赐给第谷,并拨巨款让第谷在岛上修建大型天文台。这座天文台被誉为“天堡”。它规模宏大,设备齐全,所用的天文仪器几乎都是第谷设计制造的。其中最著名的第谷象限仪。这座天文台还有配套的仪器修造厂,印刷所,图书馆,工作室和生活设施。第谷在此工作了21年,重新测定了一系列重要的天文数据,他的测量结果与现代值都很接近。

第谷不断改进观测仪器,如在窥管上引入附加的照准器,找到了既精巧又方便的横向划分法,提高了仪器的精确度。他测定了大气折射改正表,为后人的观测活动提供了很好的参照。第谷通过重新测定恒星的位置,编制成比以往更准确的1000多颗恒星的星表。

1588年国王逝世后,天文台资金十分困难,第谷艰难地维持了10年,于1597年3月被迫关闭天文台。1601年10月24日,第谷辞世。

第谷·布拉赫曾经使用过的望远镜。

1616年宗教裁决伽利略并强迫他放弃哥白尼学说1979年罗马教皇为他平反

伽利略1564年生于意大利比萨,17岁进入比萨大学,25岁时应聘为该校教授,但因宣传科学思想被迫辞职。28岁时在帕多瓦大学重任教授。伽利略发现了物理学的惯性定律,摆振动的等时性,抛物体运动规律,并确定了伽利略相对性原理,还推翻了亚里士多德关于“物体落下的速度和重量成比例”的学说,建立了落体定律,成为经典力学和实验物理学的先驱。1604年后,他把研究方向转向天文学。

1609年10月,伽利略用自制的能放大30倍的望远镜观测月亮,他看到月面覆盖着山和平原,为此他绘制了第一幅月面图。这一发现确定了地球表面和月球表面有结构上的相似之处。他的望远镜后来传遍欧洲。1610年1月7日,伽利略发现木星有4个卫星,并预言木卫绕着木星运转,木星绕着太阳公转。这一发现震动了整个欧洲,为哥白尼学说提供了有力证据。伽利略还发现了金星位相的变化,发现了太阳黑子,并且指出太阳也做自转运动。通过观测银河,他认识到宇宙的无限性,并且指出恒星并不位于同一个天球。伽利略把他的发现用《星体通报》的形式向世界作了报道,引起了知识界的震惊。他将这些汇成《星空使者》一书,对于开辟近代天文学起了特别重要的作用。

1616年,宗教裁判所对伽利略进行审判,强迫他放弃哥白尼学说。伽利略被迫同意,但却坚持写出了《关于托勒密和哥白尼两大学说的对话》一书。此书出版后引起震动。1632年,教皇乌尔班下令将年已68岁的伽利略押上法庭,最后将他遣送回家乡阿塞特。晚年,伽利略又写作了《运动的法则》一书。1637年,伽利略双目失明,于1642年1月8日去世。347年后的1979年,罗马教皇正式承认对伽利略的审判是不公正的。

伽利略的生平遭际也许是人类思想家中最具传奇性和戏剧性的了。在欧洲中世纪思想受到压制的那个时代,即便真理的发现者哥白尼,也不能不将自己的著作埋没长达25年之久。而伽利略则以无所畏惧的精神大胆宣传哥白尼学说,独步于整个时代。他也因此在人类思想史上占据一个独特的位置。纵使再过千百年,具有良知的人们也会为他的命运热泪盈眶。他的精神永世长存。

这是我们今天所了解的太阳系,它是由九大行星和太阳,以及行星的卫星和包括无数小型天体的小行星带组成的。

约翰尼斯·开普勒发现天体运动的三大规律,并发现新星,预言了水星凌日现象的出现

约翰尼斯·开普勒,1571年12月27日生于德国符腾堡。13岁进入教会学校,16岁被蒂宾根大学录取,20岁获硕士学位。1594年,在担任中学教师期间,潜心天文探索,并在1596年出版了《宇宙的神秘》一书。此书受到天文学家第谷的赏识。1600年,开普勒移居布拉格,应邀为第谷做助手。

第谷逝世后,开普勒利用遗留的大量资料,利用几何曲线表示火星的运动,发现火星运动的轨迹不是圆,而是椭圆,并且运行速度不匀。1609年,开普勒在《新天文学》一书中,发表了著名的第一和第二定律。第一定律把太阳的位置精确标定在椭圆焦点上,各行星都在椭圆轨道上绕太阳运行。第二定律也叫“面积定律”,在形式上提示了行星与太阳的连线于等时间内扫过的面积相等,这在本质上阐明了行星离太阳近则快,远则慢的不匀速性。1619年,开普勒在《宇宙论》一书中发表了第三定律,即行星绕太阳一周的时间的平方,等于椭圆长轴一半的立方。开普勒的发现为人类科学事业的发展做出了巨大的贡献。

1604年9月30日,开普勒发现蛇夫座附近一颗新星,即“开普勒新星”。1611年他出版了近代望远镜理论著作《光学》。1618-1620年他发表了《哥白尼天文学简论》一文。1619-1620年他发表了《慧星论》一书,预言了太阳光辐射压力的存在。1627年他出版的《鲁道夫星表》,直到18世纪一直被视为标准星表。开普勒于1629年出版了《稀奇的1631年天象》一书,预言1631年11月7日将出现水星凌日现象,12月6日金星也将凌日。果然,在预报的日期,巴黎的加桑狄观测到水星通过日面。这是最早的水星凌日观测。金星凌日因为发生在夜间,因而当时的人们未能观测到。

开普勒的发现彻底清除了哥白尼学说中托勒密的思想残余,给哥白尼体系带来了严谨性和规律性。而开普勒关于天体运动的三大定律,则是无论自然界的星球,还是人造天体都必须遵循的规律。因此,它不仅为人类对宇宙天体的认识做出了贡献,也为现代宇宙航行奠定了理论基础。1630年,开普勒在雷根斯堡于贫病之中去世。

著名的天文学家约翰尼斯·开普勒。

牛顿发现了万有引力。他的墓碑刻写着:上帝说“让牛顿降生,使一切变得灿烂光明”

伊萨克·牛顿,是17世纪人类最伟大的科学家,他是人类历史上屈指可数的几个科学巨人之一。他在物理学,数学和天文学方面的贡献,都是划时代的。

1642年12月25日,牛顿出生在英国一个叫乌尔斯索普的小村子里,刚出生时极度衰弱,几乎夭折。自幼丧父,与母相依为命。1661年,牛顿进入剑桥大学的三一学院学习。

1665至1667年间,牛顿已在思考引力的问题。一天傍晚,他坐在苹果树下乘凉,一个苹果从树上掉了下来。他忽然想到:为什么苹果只向地面落,而不向天上飞呢?他分析了哥白尼的日心说和开普勒的三定律,进而思考:行星为何绕着太阳而不脱离?行星速度为何距太阳近就快,远就慢?离太阳越远的行星,为何运行周期就越长?牛顿认为它们的根本原因是太阳具有巨大无比的吸引力。

经过一系列的实验,观测和演算,牛顿发现太阳的引力与它巨大的质量密切相关。牛顿进而揭示了宇宙的普遍规律:凡物体都有吸引力;质量越大,吸引力也越大;间距越大,吸引力就越小。这就是经典力学中著名的“万有引力定律”

根据牛顿的发现,可测定太阳和行星的质量,确定计算慧星轨道的法则,说明月亮和太阳的引力造成地球上的海洋潮汐现象,并推导出克服地球引力,飞向太阳系和飞出太阳系所需的最低速度,它们分别为每秒7.9千米,11.2千米和16.6千米,并依次命名为第一,第二和第三宇宙速度。牛顿不但验证了前辈们的成果,而且为未来空间运载工具的最低推力或速度下限值,提供了精确而权威的科学依据。

牛顿将其一生的成就写在《自然哲学与数学原理》一书中。他发现了物体运动的三大定律,创立了微积分数学。他后来在谈到自己所取得的成就时说:“如果我比其他人看得远些,那是因为我站在巨人的肩膀上。”

1727年3月20日凌晨,牛顿于久病不医中去世。据说在生命即将停止的时候,他的心情是坦荡而平静的。英国诗人波普为他写的碑铭说:“自然和自然的规律,都藏在黑暗的夜间;人帝说’让牛顿降生’,使一切变得灿烂光明。”

1781年3月13日,黄昏时分,赫歇耳利用演出前的短暂空闲进行星空观测。望远镜对准了大熊星座的西南方向,银河西岸的双子星座,他发现在点点群星中,有一个从来没见过的,奇怪的圆轮状的星体。赫歇耳换上放大倍数更高的目镜,发现这颗星星比它周围的那些群星距离地球要近许多。它不是恒星。因为除了太阳,恒星离我们都很遥远。连续几天,赫歇耳追踪观察这颗星星,发现这颗星不断变换位置。赫歇耳最初以为这是一颗慧星,后来确定这是一颗行星,它距离太阳比土星远1倍。这颗星就是天王星。全欧洲的报纸都以头版头条位置报道赫歇耳的发现,刊登他的画像,甚至连那架发现新行星的望远镜和赫歇耳的音乐指挥棒也被画成漫画。英王乔治三世召见赫歇耳,参观他自制的望远镜,并颁赏给他。

赫歇耳观测天象50多年,总共数了117600颗星星。他最先算出太阳以每秒17.5千米的速度运行。他还发现了太阳红外线,开创了天文学的一个分支—彩色光度学。他研究了双星,聚星和星团,推导出牛顿万有引力定律同样适用银河系的结论,他还指出恒星间的年龄是不同的。这个观点直到1950年才被确证。威廉·赫歇耳于1822年去世。作为家境宽裕,出身音乐世家的国际名人,他的死比伽利略,开普勒排场得多

1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。

1846年9月23日,柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座δ星东约50的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了一天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为“海王星”。

法英国皇家天文台获知这一消息时,台长艾里深为懊悔。因为在1845年10月,曾有一个叫亚当斯的剑桥大学学生求见,他未予接待。亚当斯留下一封信给他,信中指出在摩羯座可发现一颗9等暗星。艾里没有重视这个报告。此报告中指出的也正是这颗新发现的海王星。艾里又查阅了天文台的观测记录,更为感慨的是,这颗海王星曾两次被他们记录下来。只不过当时他们以为是一颗恒星,把它放过了。

勒威耶,1811年3月11日生于法国诺曼底的圣诺镇,他的父亲曾经为使他能去巴黎求学而卖掉房产。28岁时他开始发表大量天文学论文。亚当斯,1819年6月5日生于英国康沃尔州的拉涅斯特区,出身佃农家庭。他们于1848年在伦敦会面。

亨利·诺里斯·罗素是20世纪最有影响的天文学家。他1877年10月25日生于美国纽约州奥伊斯特贝,20岁毕业于普林斯顿大学天文系,23岁获博士学位。1902年,罗素赴英国剑桥大学学习。1905年回国,相继担任过教授,天文台台长,空军飞机制造局顾问,实验工程师等职务,在国际上享有很高的声誉。

20世纪初,罗素与丹麦天文学家E·赫茨普龙各自独立地发现了巨星序与矮星序,并创制了表示恒星光谱型与光度关系的图,后来这类图就以这两位发明者的姓氏命名,称为“赫茨普龙—罗素图”,简称“赫罗图”。此后80多年来,天文学的发展表明,该图是研究恒星演化的重要工具,受到各国学者一致推崇。

第一篇论文是《由分子运动论论平衡态液体中悬浮微粒的运动》,这是探讨物理学上的“布郎运动”的。第二篇论文是《关于光的产生和转化的一个启发性观点》,这是讨论光电效应问题的,也是把量子论导入物理学的早期成果。爱因斯坦因此获得1921年的诺贝尔物理学奖。第三篇论文是《论运动物体的电动力学》,爱因斯坦就是在这篇论文里提出了后来广为人知的狭义相对论。爱因斯坦使用“狭义”的概念,是指这种理论仅限于在一定范围内成立。由于狭义相对论的出现,物理学中的许多概念发生了根本性改变,引导出了理论和实践上的一系列非凡的结果。第四篇论文是《物体的惯性同其所含能量有关吗?》。他在此提出了著名的质能方程。

史蒂芬·霍金,1942年1月8日生于英格兰牛津,是20世纪最著名的理论物理学家。他毕业于牛津大学,在剑桥大学获得哲学博士学位。他20岁时,正值在剑桥大学研究院读一年级之际,突然患了肌萎缩性侧索硬化症,一般认为患有此病将于病发后3年左右死亡,但是霍金顽强搏斗,奇迹般地活了下来,并在学术上取得被誉为继爱因斯坦之后第一人的成就。

霍金主要从事广义相对论和宇宙学的研究。他在和埃利斯合著的《大尺度空理结构》一书中,批评了爱因斯坦广义相对论对外力的处理。他认为,爱因斯坦理论不可避免导致某种无法描述的奇异点的存在。霍金和埃利斯指出存在两种奇异点:一是恒星塌缩形成黑洞,二是宇宙的开端。霍金因此成为量子引力理论研究的开拓者,霍金对黑洞的研究最为著名,他指出了一般认为无法探求的黑洞的许多特征以及它们与经典物理学的关系。1974年,霍金从数学上证明了黑洞不“黑”,而是以稳定了速率向外发射粒子。他的研究开拓了天体物理学的新的研究领域。霍金在理论上一直致力于将量子论与相对论结合起来,这种努力曾经为爱因斯坦所尝试但未能取得成功。霍金的探索已经取得一些惊人的成果,但是还没有被完全承认。

流星与彗星有什么区别

流星是分布在星际空间的细小物体和尘粒,叫做流星体。它们飞入地球大气层,跟大气摩擦发生了光和热,最后被燃尽成为一束光,这种现象叫流星。(如果没有燃尽就是陨星)。通常所说的流星指这种短时间发光的流星体。俗称贼星。 流星2 [liúxīng]①古代兵器,在铁链的两端各系一个铁锤。②杂技的一种,在长绳的两端拴上盛着水的碗或火球,用手摆动绳子,使水碗或火球在空中飞舞。大约92.8% 的流星的主要成分是二氧化硅(也就是普通岩石),5.7% 是铁和镍,其他的流星是这三种物质的混合物。

太阳系内除了太阳、八大行星及其卫星、小行星、彗星外,在行星际空间还存在着大量的尘埃微粒和微小的固体块,它们也绕着太阳运动。在接近地球时由于地球引力的作用会使其轨道发生改变,这样就有可能穿过地球大气层。或者,当地球穿越它们的轨道时也有可能进入地球大气层。由于这些微粒与地球相对运动速度很高(11-72公里/秒),与大气分子发生剧烈摩擦而燃烧发光,在夜间天空中表现为一条光迹,这种现象就叫流星,一般发生在距地面高度为80-120公里的高空中。流星中特别明亮的又称为火流星。造成流星现象的微粒称为流星体,所以流星和流星体是两种不同的概念。

流星包括单个流星(偶发流星)、火流星和流星雨三种,比绿豆大一点的流星体进入大气层就能形成肉眼可见亮度的流星。

流星体的质量一般很小,比如产生5等亮度流星的流星体直径约0.5cm,质量0.06毫克。肉眼可见的流星体直径在0.1-1cm之间。它们与大气的相对速度与流星体进入地球的方向有关,如果与地球迎面相遇,速度可超过每秒70公里,如果是流星体赶上地球或地球赶上流星体而进入大气,相对速度为每秒10余公里。但即使每秒10公里的速度也已高出子弹出枪膛速度的10倍,足以与大气分子、原子碰撞、摩擦而燃烧发光,形成流星而为我们看到。大部分流星体在进入大气层后都气化殆尽,只有少数大而结构坚实的流星体才能因燃烧未尽而有剩余固体物质降落到地面,这就是陨星。特别小的流星体因与大气分子碰撞产生的热量迅速辐射掉,不足以使之气化产据观测资料估算,每年降落到地球上的流星体,包括汽化物质和微陨星,总质量约有20万吨之巨! 这是否会使地球不断变"胖"呢?请看地球质量约为6×1021吨。由于流星体下落使地球"体重"的增加在50亿年时间内的总量约为3.3×1017吨,或者说使地球质量增加了两万分之一,相当于体重200斤的大胖子增加0.1两。可见其实在是微不足道!

生流星现象,而是以尘埃的形式飘浮在大气中并最终落到地面上,称为微陨星。

流星体是穿行在星际空间的尘埃和固体小块,数量众多,沿同一轨道绕太阳运行的大群流星体,称为流星群。其中石质的叫陨石;铁质的叫陨铁。

流星雨

流星雨在太阳系中,除了八大行星、矮行星和它们的卫星之外,还有彗星、小行星以及一些更小的天体。小天体的体积虽小,但它们和八大行星、矮行星一样,在围绕太阳公转。如果它们有机会经过地球附近,就有可能以每秒几十公里的速度闯入地球大气层,其上面的物质由于与地球大气发生剧烈摩擦,巨大的动能转化为热能,引起物质电离发出耀眼的光芒。这就是我们经常看到的流星。

流星雨是一种成群的流星,看起来像是从夜空中的一点迸发出来,并坠落下来的特殊天象。这一点或一小块天区叫做流星雨的辐射点。为区别来自不同方向的流星雨,通常以流星雨辐射点所在天区的星座给流星雨命名。例如每年11月17日前后出现的流星雨辐射点在狮子座中,就被命名为狮子座流星雨。其他流行雨还有宝瓶座流星雨、猎户座流星雨、英仙座流星雨。

有的流星是单个出现的,在方向和时间上都很随机,也无任何辐射点可言,这种流星称为偶发流星。流星雨与偶发流星有着本质的不同,流星雨的重要特征之一是所有流星的反向延长线都相交于辐射点。

流星雨的规模大不相同。有时在一小时中只出现几颗流星,但它们看起来都是从同一个辐射点“流出”的,因此也属于流星雨的范畴;有时在短短的时间里,在同一辐射点中能迸发出成千上万颗流星,就像节日中人们燃放的礼花那样壮观。当每小时出现的流星数超过1000颗时,称为“流星暴”。

彗星

除了离太阳很远时以外,彗星的长长的明亮稀疏的彗尾,在过去给人们这样的印象,即认为彗星很靠近地球,甚至就在我们的大气范围之内。1577年第谷指出当从地球上不同地点观察时,彗星并没有显出方位不同:因此他正确地得出它们必定很远的结论。彗星属于太阳系小天体。

每当彗星接近太阳时,它的亮度迅速地增强。对离太阳相当远的彗星的观察表明它们沿着被高度拉长的椭圆运动,而且太阳是在这椭圆的一个焦点上,与开普勒第一定律一致。彗星大部分的时间运行在离太阳很远的地方,在那里它们是看不见的。只有当它们接近太阳时才能见到。

大约有40颗彗星公转周期相当短(小于100年),因此它们作为同一颗天体会相继出现。历史上第一个被观测到相继出现的同一天体是哈雷彗星,牛顿的朋友和捐助人哈雷(1656一1742)在1705年认识到它是周期性的。它的周期是76年。历史记录表明自从公元前240年也可能自公元前466年来,它每次通过太阳时都被观测到了。它最近一次是在1986年通过的。

离太阳很远时彗星的亮度很低,而且它的光谱单纯是反射阳光的光谱。当彗星进入离太阳8个天文单位以内时,它的亮度开始迅速增长并且光谱急剧地变化。科学家看到若干属于已知分子的明亮谱线。发生这种变化是因为组成彗星的固体物质(彗核)突然变热到足以蒸发并以叫做彗发的气体云包围彗核。太阳的紫外光引起这种气体发光。

彗发的直径通常约为105千米,但彗尾常常很长枣达108千米或1天文单位。彗尾被认为是由气体和尘埃组成;4个联合的效应将它从彗星上吹出:(1)当气体和伴生的尘埃从彗核上蒸发时所得到的初始动量。(2)阳光的辐射压将尘埃推离太阳。(3)太阳风将带电粒子吹离太阳。(4)朝向太阳的万有引力吸力。这些效应的相互作用使每个彗尾看上去都不一样。当然,物质蒸发到彗发和彗尾中去,消耗了彗核的物质。有时以爆发的方式出现,比拉彗星就是那样;1846年它通过太阳时破裂成两个,1852年那次通过以后就全部消失。科学家估计一般接近太阳距离只有几个天文单位的彗星将在几千年内瓦解。

公元1066年,诺曼人入侵英国前夕,正逢哈雷彗星回归。当时,人们怀有复杂的心情,注视着夜空中这颗拖着长尾巴的古怪天体,认为是上帝给予的一种战争警告和预示。后来,诺曼人征服了英国,诺曼统帅的妻子把当时哈雷彗星回归的景象绣在一块挂毯上以示纪念。中国民间把彗星贬称为“扫帚星”、“灾星”。像这种把彗星的出现和人间的战争、饥荒、洪水、瘟疫等灾难联系在一起的事情,在中外历史上有很多。

彗星是在扁长轨道(极少数在近圆轨道)上绕太阳运行的一种质量较小的云雾状小天体。

彗星的轨道

彗星的轨道有椭圆、抛物线、双曲线三种。椭圆轨道的彗星又叫周期彗星,另两种轨道的又叫非周期彗星。周期彗星又分为短周期彗星和长周期彗星。一般彗星由彗头和彗尾组成。彗头包括彗核和彗发两部分,有的还有彗云。并不是所有的彗星都有彗核、彗发、彗尾等结构。我国古代对于彗星的形态已很有研究,在长沙马王堆西汉古墓出土的帛书上就画有29幅彗星图。在晋书“天文志”上清楚地说明彗星不会发光,系因反射太阳光而为我们所见,且彗尾的方向背向太阳。彗星的体形庞大,但其质量却小得可怜,就连大彗星的质量也不到地球的万分之一。由于彗星是由冰冻着的各种杂质、尘埃组成的,在远离太阳时,它只是个云雾状的小斑点;而在靠近太阳时,因凝固体的蒸发、气化、膨胀、喷发,它就产生了彗尾。彗尾体积极大,可长达上亿千米。它形状各异,有的还不止一条,一般总向背离太阳的方向延伸,且越靠近太阳彗尾就越长。宇宙中彗星的数量极大,但目前观测到的仅约有1600颗。

彗星的轨道与行星的很不相同,它是极扁的椭圆,有些甚至是抛物线或双曲线轨道。轨道为椭圆的彗星能定期回到太阳身边,称为周期彗星;轨道为抛物线或双曲线的彗星,终生只能接近太阳一次,而一旦离去,就会永不复返,称为非周期彗星,这类彗星或许原本就不是太阳系成员,它们只是来自太阳系之外的过客,无意中闯进了太阳系,而后又义无反顾地回到茫茫的宇宙深处。周期彗星又分为短周期(绕太阳公转周期短于200年)和长周期(绕太阳公转周期超过200年)彗星。目前,已经计算出600多颗彗星的轨道。彗星的轨道可能会受到行星的影响,产生变化。当彗星受行星影响而加速时,它的轨道将变扁,甚至成为抛物线或双曲线,从而使这颗彗星脱离大阳系;当彗星减速时,轨道的偏心率将变小,从而使长周期彗星变为短周期彗星,甚至从非周期彗星变成了周期彗星以致被“捕获”。

彗星的结构

彗星没有固定的体积,它在远离太阳时,体积很小;接近太阳时,彗发变得越来越大,彗尾变长,体积变得十分巨大。彗尾最长竟可达2亿多千米。彗星的质量非常小,绝大部分集中在彗核部分。彗核的平均密度为每立方厘米1克。彗发和彗尾的物质极为稀薄,其质量只占总质量的1%--5%,甚至更小。彗星物质主要由水、氨、甲烷、氰、氮、二氧化碳等组成,而彗核则由凝结成冰的水、二氧化碳(干冰)、氨和尘埃微粒混杂组成,是个“脏雪球”。

彗星的起源

彗星的起源是个未解之谜。有人提出,在太阳系外围有一个特大彗星区,那里约有1000亿颗彗星,叫奥尔特云,由于受到其它恒星引力的影响,一部分彗星进入太阳系内部,又由于木星的影响,一部分彗星逃出太阳系,另一些被“捕获”成为短周期彗星;也有人认为彗星是在木星或其它行星附近形成的;还有人认为彗星是在太阳系的边远地区形成的;甚至有人认为彗星是太阳系外的来客。

因为周期彗星一直在瓦解着,必然有某种产生新彗星以代替老彗星的方式。可能发生的一种方式是在离太阳105天文单位的半径上储藏有几十亿颗以各种可能方向绕太阳作轨道运动的彗星群。这个概念得到观测的支持,观测到非周期彗星以随机的方向沿着非常长的椭圆形轨道接近太阳。随着时间的推移,由于过路的恒星给予的轻微引力,可以扰乱遥远彗星的轨道,直至它的近日点的距离变成小于几个天文单位。当彗星随后进入太阳系时,太阳系内的各行星的万有引力的吸力能把这个非周期彗星转变成新的周期彗星(它瓦解前将存在几千年)。另一方面,这些力可将它完全从彗星云里抛出。如果这说法正确,过去几个世纪以来一千颗左右的彗星记录只不过是巨大彗星云中很少一部分样本,这种云迄今尚未直接观察到。与个别恒星相联系的这种彗星云可能遍及我们所处的银河系内。迄今还没有找到一种方法来探测可能与太阳结成一套的大量彗星,更不用说那些与其他恒星结成一套的彗星云了。

彗星云的总质量还不清楚,不只是彗星总数很难确定,即使单个彗星的质量也很不确定。估计彗星云的质量在10-13至10-3地球质量之间。

彗星的性质

彗星的性质还不能确切知道,因为它藏在彗发内,不能直接观察到,但我们可由彗星的光谱猜测它的一些性质。通常,这些谱线表明存在有OH、NH和NH2基团的气体,这很容易解释为最普通的元素C、N和O的稳定氢化合物,即CH4,NH3和H2O分解的结果,这些化合物冻结的冰可能是彗核的主要成分。科学家相信各种冰和硅酸盐粒子以松散的结构散布在彗核中,有些象脏雪球那样,具有约为0.1克/立方厘米的密度。当冰受热蒸发时它们遗留下松散的岩石物质,所含单个粒子其大小从104厘米到大约105厘米之间。当地球穿过彗星的轨道时,我们将观察到的这些粒子看作是流星。有理由相信彗星可能是聚集形成了太阳和行星的星云中物质的一部分。因此,人们很想设法获得一块彗星物质的样本来作分析以便对太阳系的起源知道得更多。这一计划理论上可以作到,如设法与周期彗星在空间做一次会合。目前这样的计划正在研究中。

彗星与生命

彗星是一种很特殊的星体,与生命的起源可能有着重要的联系。彗星中含有很多气体和挥发成分。根据光谱分析,主要是C2、CN、C3、另外还有OH、NH、NH2、CH、Na、C、O等原子和原子团。这说明彗星中富含有机分子。许多科学家注意到了这个现象:也许,生命起源于彗星!

1990年,NASA的Kevin. J. Zahule和Daid Grinspoon对白垩纪-第三纪界线附近地层的有机尘埃作了这样的解释:一颗或几颗彗星掠过地球,留下的氨基酸形成了这种有机尘埃;并由此指出,在地球形成早期,彗星也能以这种方式将有机物质像下小雨一样洒落在地球上----这就是地球上的生命之源。

彗星的俗称

彗星俗称扫把星。在《天文略论》这本书中写道:彗星为怪异之星,有首有尾,俗象其形而名之曰扫把星。

肉眼能看到的著名星星有哪些?怎样将这些星星分类?急需答案

这是我以前看到并记下来的,希望有点用处。

全天亮星表

排名 名称 所属星座 视星等 绝对星等 距离(光年)

1 天狼星(Sirius) 大犬座(CanisMajor) -1.46 1.4 8.6

2 老人星(Canopus) 船底座(Carina) -0.72 -2.5 74

3 南门二(RigilKentaurus) 半人马座(Centaurus) -0.27 4.4 4.3

4 大角星(Arcturus) 牧夫座 -0.04 0.2 36

5 织女星(Vega) 天琴座(Lyra) 0.03 0.6 26.5

6 五车二(Capella) 御夫座(Auriga) 0.08 0.4 45

7 参宿七(Rigel) 猎户座(Orion) 0.1 -8.1 900

8 南河叁(Procyon) 小犬座(CanisMinor) 0.38 2.6 11.3

9 参宿四(Betelgeux) 猎户座(Orion) 0.4(var.) -7.2 470

10 水委一(Achernar) 波江座(Eridanus) 0.46 -1.3 120

11 马腹一(Agena) 半人马座(Centaurus) 0.61(var.) -4.4 500

12 牛郎星(Altair) 天鹰座(Aguila) 0.77 2.3 16.5

13 十字架二(Acrux) 南十字(CruxAustralis) 0.83 -4.6 400

14 毕宿五(Aldebaran) 金牛座(Taurus) 0.85(var.) -0.3 68

15 心宿二(Antares) 天蝎座(Scorpius) 0.96(var.) -5.2 520

16 角宿一(Spica) 室女座(Virgo) 0.98(var.) -3.2 250

17 北河叁(Pollux) 双子座(Gemini) 1.14 0.7 35

18 北落师门(Fomalhaut) 南鱼座(PiscisAustrialis) 1.16 2.0 23

19 天津四(Deneb) 天鹅座(Gygnus) 1.25 -7.2 1600

20 十字架叁(Becrux) 南十字(CruxAustralis) 1.25(var.) -4.7 500

21 轩辕十四(Regulus) 狮子座(Leo) 1.35 -0.3 85

22 (Adhara) 大犬座(CanisMajor) 1.50 -4.8 570

23 北河二(Castor) 双子座(Gemini) 1.57 0.5 120

24 (Gacrux) 南十字(CruxAustralis) 1.63(.var) -1.2 49

25 (Shaula) 天蝎座(Scorpius) 1.63(var.) -3.5 330

47 北极星(Polaris) 小熊座(UrsaMinor) 1.99 800

高分悬赏关于宇宙的几个问题

1

高一地理教材说是10亿个。

1995年,天文学家利用哈勃空间望远镜对北部外空进行了观测,估算出宇宙中大约有800亿个星系。3年后,即1998年10月又对南部外空进行了观测,估算出的宇宙星系数量达1250亿个。

为什么两次观测的数字相差这么多,美国太空望远镜科学研究所的哈里·弗古森解释说,这是由于对南部外空的观测距离比北部外空的观测距离更远。

由此可以知道,宇宙中的星系数量比1250亿个还要多,因为哈勃空间望远镜并没有看到宇宙的边缘。

2

星系大小不是由星体个数而是由质量或范围衡量的。

1990年10月30日,美国天文学家观察到距银河系600万光年、大小约为银河系60倍的一个星系。这是迄今被发现的最大星系。

据美国《科学》杂志报道,这一星系位于一个星系团的中心,被称为:“埃布尔(ABELL)2029”。它共有 100000多万亿个恒星,而银河系才有2000亿个恒星。

质量最小

据科学日报网站报道,美国科学家日前找到宇宙中据科学日报网站报道,美国科学家日前找到宇宙中质量最小的星系,质量约为太阳质量的1000万倍。

美国加州大学尔湾分校的天文学教授近日通过对星系射出的光线进行观察,成功的找到宇宙中质量最小的星系,这一星系的质量约为太阳质量的1000万倍,属于白矮星系。科学家们介绍称,确切得说我们发现了一个白矮星系群,它由数十个更小的星系构成,虽然这些星系的外观大小以及明亮度都不同,甚至差异巨大,但这些星系的质量却令人吃惊的一致,每一个都是太阳质量的1000万倍。的星系,质量约为太阳质量的1000万倍。

范围最小

http://www.bioon.com/popular/records/22915.shtml

这些星系曾被列入新型超密实矮星(Ultra Compact Dwarfs - UCD),这类星系的质量要比普通矮星星系的质量轻1~2个等级,而它们的大小可以完全放入太阳系与猎户星座之间,即它的直径约为500光年。最可能是,这些小型星系由普通矮星星系形成,矮星星系的外部恒星曾俘获了邻近更巨大的星系。

3

有多少颗很难说清楚。

一项最新研究说,仅银河系中就至少可能有上千亿的行星,这个数字远远超出人们原有的认识。

研究人员在新一期英国《自然》杂志发表的报告说,这意味着,在银河系中平均每颗恒星周围都有至少一颗行星。因此恒星周围伴有行星实际上应该是一种普遍现象,而并非过去人们认为的少见现象。

银河系约有2000多亿个恒星。

关于天文的知识

太阳系

(注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。) 太阳系(solar system)是由太阳、8颗大行星、66颗卫星以 太阳系

及无数的小行星、彗星及陨星组成的。 行星由太阳起往外的顺序是:水星(Mercury)、金星(Venus)、地球(Earth)、火星(Mars)、木星(Jupiter)、土星(Saturn)、天王星(Uranus)和海王星(Neptune)。 离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(大于3.0克/立方厘米)、体积小、自转慢、卫星少、主要由石质和铁质构成、内部成分主要为硅酸盐(silicate)并且具有固体外壳。 离太阳较远的木星、土星、天王星及海王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈、主要由氢、氦、冰、甲烷、氨等构成、质量和半径均远大于地球,但密度却较低,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。 在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质星。

行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=0.4+0.3*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星自转周期很长,分别为58.65天和243天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。 在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,太阳只是银河系中上千亿个恒星中的一个,它离银河系中心约8.5千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。