首页 算命 正文

eviews计算命令

1.计量经济学根据eviews回归结果,表格里的数据怎么算出来

计算如下。

1:Coefficient除以standard error 等于 t-statisticcost 的 t-statistic就等于 -56。43329/31。45720Adjusted R-quared= [1-(n-1)(1-R^2)/(n-k)]eg: 常数C的standard error 就等于 155。6083/0。269042=578.379212167617Income 的 coefficiengt 就等于 0。063573x12。

2:计量经济学是结合经济理论与数理统计,并以实际经济数据作定量分析的一门学科。主要内容包括理论计量经济学和应用经济计量学。

理论计量经济学主要研究如何运用、改造和发展数理统计的方法,使之成为随机经济关系测定的特殊方法。

计量经济学研究的核心是设计模型、收集资料、估计模型、检验模型、应用模型(结构分析、经济预测、政策评价)。

EViews是完成上述任务比较得力的必不可少的工具。正是由于EViews等计量经济学软件包的出现,使计量经济学取得了长足的进步,发展成为一门较为实用与严谨的经济学科。

扩展资料

Eviews是专门为大型机构开发的、用以处理时间序列数据的时间序列软件包的新版本。Eviews的前身是1981年第1版的Micro TSP。

虽然Eviews是经济学家开发的,而且主要用于经济学领域,但是从软件包的设计来看,Eviews的运用领域并不局限于处理经济时间序列。即使是跨部门的大型项目,也可以采用Eviews进行处理。

Eviews处理的基本数据对象是时间序列,每个序列有一个名称,只要提及序列的名称就可以对序列中所有的观察值进行操作,Eviews允许用户以简便的可视化的方式从键盘或磁盘文件中输入数据,根据已有的序列生成新的序列。

在屏幕上显示序列或打印机上打印输出序列,对序列之间存在的关系进行统计分析。Eviews具有操作简便且可视化的操作风格,体现在从键盘或从键盘输入数据序列、依据已有序列生成新序列、显示和打印序列以及对序列之间存在的关系进行统计分析等方面。

Eviews具有现代Windows软件可视化操作的优良性。可以使用鼠标对标准的Windows菜单和对话框进行操作。

操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。此外,Eviews还拥有强大的命令功能和批处理语言功能。在Eviews的命令行中输入、编辑和执行命令。在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。

参考资料:eviews的百度百科

2.eviews 求一阶二阶差分序列的命令是什么

genr xt=d(x,2),x是原序列,xt是差分后的序列。

在eviews里面的操作:假设你要产生一阶差分的序列为x,且已经把序列x的数据导入eviews

在命令区键入:“series dx=d(x)” 再按回车键,eviews自然生成一个新的“dx”序列,即为一阶差分序列;二阶差分同样操作,“series d2x=d(dx)”

又如:设有等差数列{an},取bn=an+1-an,则称{bn}为{an}的一阶差分等差数列。

同理,取cn=bn+1-bn=an+2-2an+1+an,则称{cn}为{an}的二阶差分等差数列。

扩展资料

Eviews处理的基本数据对象是时间序列,每个序列有一个名称,只要提及序列的名称就可以对序列中所有的观察值进行操作,Eviews允许用户以简便的可视化的方式从键盘或磁盘文件中输入数据,根据已有的序列生成新的序列,在屏幕上显示序列或打印机上打印输出序列。

对序列之间存在的关系进行统计分析。Eviews具有操作简便且可视化的操作风格,体现在从键盘或从键盘输入数据序列、依据已有序列生成新序列、显示和打印序列以及对序列之间存在的关系进行统计分析等方面。

Eviews具有现代Windows软件可视化操作的优良性。可以使用鼠标对标准的Windows菜单和对话框进行操作。操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。此外,Eviews还拥有强大的命令功能和批处理语言功能。在Eviews的命令行中输入、编辑和执行命令。在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。

参考资料来源:搜狗百科-eviews

3.如何用eviews计算自变量之间的相关系数

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。

通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。

一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。

由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。

这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。

这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。

第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。

Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。

如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。

平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。

〔例1〕某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。

表1 某企业食盐销售量 单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本章第一节中已经阐明,这里不再赘述。

假设已经建立工作文件,并生成了一个样本期为l~30的序列,命名为SALES。序列SALES中包含例1中需要分析的数据。

第二步,绘制序列图形。在序列对象窗口中,点击View→Line Graph。

屏幕显示图1所示图形。 图1 某企业近30个月的销售量动态图 从图1中可以看出,这个企业近30个月的销售量并不存在明显的趋势,并且没有明显的季节趋势。

因此,从直观上判断可以采用一次指数平滑法对企业下个月的销售量进行预测。 第三步,扩大样本期。

本例要求对下一个月的销售量进行预测,而工作文件的样本期是1~30,在Eviews中要求先更改样本期。更改样本期的操作在本章第一节已经讲过,这里将样本期改为l~31。

第四步,进行指数平滑。指数平滑的菜单操作方法有两种:一是在主工作文件窗口打开的情况下,点击主窗口的Quick→Series Statistics→Exponential Smoothing;二是在序列对象窗口中点击Procs→Exponential Smoothing。

点击后屏幕出现如图2所示的指数平滑对话框。 指数平滑对话框中包含五个部分的选项:平滑方法(Smoothing Method)、平滑系数(Smoothing Parameters)、平滑后生成序列的名称(Smoothed Series)、预测样本范围(Estimation Sample)和季节变动周期(Cycle for Seasonal)。

对话框左上部分的平滑方法(Smoothing Method)包括: Single 一次指数平滑 Double 二次指数平滑 Holt-Winters-No seasonal Holt-Winters无季节模型 Holt-Winters-Additive Holt-Winters季节迭加模型 Holt-Winters-Multiplicative Holt-Winters季节乘积模型 平滑系数(Smoothing Parameters)包括Alpha,Beta,Gamma。平滑系数可由系统自动给定,也可以由用户指定。

缺省状态是由系统自动给定。如果用户需要指定,只需在对应参数的位置填入指定的数值。

本例中,分别指定Alpha的值为0.3和0.5。当指定平滑系数为0.3时,预测的残差平方和为137.2978;当平滑系数为0.5时,预测的残差平方和为165.0685。

因此这里选择平滑系数为0.3时的预测结果。根据一次指数平滑方法的预测,该企业下个月的销售量应为29.2吨。

图2 指数平滑对话框 (二)二次指数平滑 二次指数平滑又称双重指数平滑。相对于一次指数平滑,二次指数平滑可以预测有一定线性趋势的序列,其预测期也长一些。

[例2]某公司1990-2001年的实际销售额如表2所示。请根据此资料预测2002年和2003年企业销售额。

表2 某公司销售额 单位:万元 解:第一步,建立工作文件,样本期为1990-2001的年度数据。在新建立的工作文件中,生成一个名为SALES的新序列。

打开SALES序列对话框,将表2中的数据录入。 第二步,绘制序列图形。

从图中可以看到,该企业的销售额存在明显的增长趋势(见图3)。序列的波动并不是很剧烈。

由此判断,使用二次指数平滑法进行预测比较合适。

4.eviews做方差分解的指令是什么

输入help var 可以得到var函数的有关帮助,其中有一句非常重要的话:

VAR(X) normalizes by N-1 where N is the sequence length.

This makes VAR(X) the best unbiased estimate of the variance if X is a sample from a normal distribution.

是说matlab这样设置是考虑到现实中误差理论的应用。其成因分解为:自身冲击、其它变量冲击所构成的贡献率,从而了解各变量冲击对模型内生变量的相对重要性。

扩展资料:

Eviews是专门为大型机构开发的、用以处理时间序列数据的时间序列软件包的新版本。Eviews的前身是1981年第1版的Micro TSP。

虽然Eviews是经济学家开发的,而且主要用于经济学领域,但是从软件包的设计来看,Eviews的运用领域并不局限于处理经济时间序列。即使是跨部门的大型项目,也可以采用Eviews进行处理。

Eviews处理的基本数据对象是时间序列,每个序列有一个名称,只要提及序列的名称就可以对序列中所有的观察值进行操作。

Eviews允许用户以简便的可视化的方式从键盘或磁盘文件中输入数据,根据已有的序列生成新的序列,在屏幕上显示序列或打印机上打印输出序列。

对序列之间存在的关系进行统计分析。Eviews具有操作简便且可视化的操作风格,体现在从键盘或从键盘输入数据序列、依据已有序列生成新序列、显示和打印序列以及对序列之间存在的关系进行统计分析等方面。

参考资料来源:百度百科-eviews

5.如何运用Eviews的矩阵运算功能进行参数值求解

要看你这里所指的参数值是什么。

通常来说,eviews内置了多种估计方法来估计回归模型的参数,但有时候,有的大学老师为了考察学生对eviews和估计方法的掌握情况,要求学生用eviews在不调用现成估计方法的基础上计算出回归模型的参数,这时候就根据ols的矩阵表述把参数计算出来。假设你的自变量有2个 x1 x2 它们都是30个观测值的序列,你的因变量为y0 也是一个有30个不观测值的序列。

在eviews的命令窗口依次输入如下命令,符号(')后面的的是注释,不用管series cons=1 '建立常数序列group g1 cons x1 x2 '建立自变量组matrix x=g1 '建立自变量矩阵matrix y=y0 '建立因变量矩阵(列向量)matrix beta=@inverse(@transpose(x)*x)*@transpose(x)*y '使用OLS的矩阵表达式计算参数打开beta矩阵,里面就是你要的参数。