首页 八字算命 正文

几何八字模型定理:八字模型几何语言

几何八字模型定理

神奇的模型数学(21)---万能的“八字形”

问题提出:

如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=___.

几何八字模型定理

首先让我们来看一个大家再熟悉不过的题:

如图,已知五角星ABCDE,试求∠A+∠B+∠C+∠D+∠E的度数。

∵∠ENM是△ACN的外角,

∴∠ENM=∠A+∠C,(三角形的外角等于不相邻的两个内角的和)

同理可得,∠EMN=∠B+∠D.

∵∠MNE+∠NME+∠E=180°,

∴∠A+∠B+∠C+∠D+∠E=180°

几何八字模型定理

在n年前我的老师是这样教我们的,若干年后正能良传承了老师的衣钵,我也一直是这样教自己的学生.想必大家与我一样认为这就是唯一的解法.这的确是一种好的数学方法,运用了转化的数学思想,把要求的"五角星”的五个角的和集中到一个三角形中.也许就是因为这种解法太过完美了,一直把我们的思维禁锢其中,以致于一丁点都没有去思考过有没有更巧妙的方法.一次正能良在做类似的题的时候突然眼前一亮,发现了一个对于解决角度和的问题万能的数学模型---"八字形".

数学模型:几何八字模型定理

内涵:∠A+∠B=∠C+∠D.

事实上,根据三角形的外角等于不相邻的两个内角的和可得,∠A+∠B=∠1,∠C+∠D=∠1,所以有∠A+∠B=∠C+∠D.

下面我们用万能的“八字形”来解决五角星问题:

几何八字模型定理

解:如图,连接CD,

∵∠B+∠E=∠1+∠2,

∴∠A+∠B+∠C+∠D+∠E

=∠A+∠1+∠ACE+∠2+∠ADB

=∠A+∠ACD+∠ADC

=180°.

问题解决:

如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=___.

几何八字模型定理

解:连AE,BE,

∵AE∥CD,

∴∠2=∠3.

易知,△ABE为等腰直角三角形,∠AEB=90°,

又∠ACB=90°,

由“八字形”数学模型知,∠3=∠4

∴∠2=∠4.

∴∠1+∠2=∠1+∠4=∠ABE=45°

巩固练习:

1.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=( ).

A. 540° B. 720° C. 360° D. 900°

几何八字模型定理

2.如图,已知∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F= .

几何八字模型定理

3.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的度数.

几何八字模型定理

敬请关注:正能良60038993.